
HDL Verifier™

Getting Started Guide

R2015b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

HDL Verifier™ Getting Started Guide
© COPYRIGHT 2003–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

August 2003 Online only New for Version 1 (Release 13SP1)
February 2004 Online only Revised for Version 1.1 (Release 13SP1)
June 2004 Online only Revised for Version 1.1.1 (Release 14)
October 2004 Online only Revised for Version 1.2 (Release 14SP1)
December 2004 Online only Revised for Version 1.3 (Release 14SP1+)
March 2005 Online only Revised for Version 1.3.1 (Release 14SP2)
September 2005 Online only Revised for Version 1.4 (Release 14SP3)
March 2006 Online only Revised for Version 2.0 (Release 2006a)
September 2006 Online only Revised for Version 2.1 (Release 2006b)
March 2007 Online only Revised for Version 2.2 (Release 2007a)
September 2007 Online only Revised for Version 2.3 (Release 2007b)
March 2008 Online only Revised for Version 2.4 (Release 2008a)
October 2008 Online only Revised for Version 2.5 (Release 2008b)
March 2009 Online only Revised for Version 2.6 (Release 2009a)
September 2009 Online only Revised for Version 3.0 (Release 2009b)
March 2010 Online only Revised for Version 3.1 (Release 2010a)
September 2010 Online only Revised for Version 3.2 (Release 2010b)
April 2011 Online only Revised for Version 3.3 (Release 2011a)
September 2011 Online only Revised for Version 3.4 (Release 2011b)
March 2012 Online only Revised for Version 4.0 (Release 2012a)
September 2012 Online only Revised for Version 4.1 (Release 2012b)
March 2013 Online only Revised for Version 4.2 (Release 2013a)
September 2013 Online only Revised for Version 4.3 (Release 2013b)
March 2014 Online only Revised for Version 4.4 (Release 2014a)
October 2014 Online only Revised for Version 4.5 (Release 2014b)
March 2015 Online only Revised for Version 4.6 (Release 2015a)
September 2015 Online only Revised for Version 4.7 (Release 2015b)

v

Contents

Introduction
1

HDL Verifier Product Description . 1-2
Key Features . 1-2

About HDL Verifier
2

HDL Cosimulation . 2-2
HDL Cosimulation with MATLAB or Simulink 2-2
Communications for HDL Cosimulation 2-6
Hardware Description Language (HDL) Support 2-6
HDL Cosimulation Workflows . 2-7
Product Features and Platform Support 2-7

FPGA Verification . 2-8
FPGA Verification with HDL Verifier and HDL Coder 2-8
Product Features and Platform Support 2-8

TLM Component Generation . 2-11
Generating TLM Components for Virtual Platform

Development . 2-11
Typical Users and Applications . 2-12
Product Feature and Platform Support 2-13

SystemVerilog DPI Component Generation 2-14
Export Simulink Subsystem or MATLAB Function With DPI

Interface . 2-14
Workflows . 2-14
Product Feature and Platform Support 2-14

vi Contents

HDL Verifier Supported Hardware . 2-16

Third-Party Product Requirements
3

Supported EDA Tools and Hardware 3-2
Cosimulation Requirements . 3-2
FPGA Verification Requirements . 3-3
TLM Generation System Requirements 3-8

System Objects
4

What Is a System Toolbox? . 4-2

What Are System Objects? . 4-3

System Objects vs. MATLAB Functions 4-4
System Objects vs. MATLAB Functions 4-4

System Design and Simulation in MATLAB 4-5

System Objects in Simulink . 4-6
System Objects in the MATLAB Function Block 4-6

System Object Methods . 4-7
What Are System Object Methods? . 4-7
The Step Method . 4-7
Common Methods . 4-8

System Design in MATLAB Using System Objects 4-10
Create Components for Your System 4-10
Configure Components for Your System 4-10
Assemble Components to Create Your System 4-11
Run Your System . 4-12
Reconfigure Your System During Runtime 4-12

1

Introduction

1 Introduction

1-2

HDL Verifier Product Description
Verify VHDL and Verilog using HDL simulators and FPGA-in-the-loop test benches

HDL Verifier™ automates Verilog® and VHDL® design verification using HDL
simulators and FPGA hardware-in-the-loop. It provides interfaces that link MATLAB®

and Simulink® with Cadence Incisive®, Mentor Graphics® ModelSim®, and Mentor
Graphics Questa® HDL simulators. It also supports FPGA-in-the-loop verification with
Xilinx® and Altera® FPGA boards.

HDL Verifier automates verification by using MATLAB or Simulink to stimulate
your HDL code and analyze its response. This approach eliminates the need to author
standalone Verilog or VHDL test benches.

Key Features

• Cosimulation support for Cadence Incisive and for Mentor Graphics ModelSim and
Questa

• FPGA-in-the-loop verification using Xilinx and Altera FPGA boards
• MATLAB functions and Simulink blocks
• Generation of IEEE® 1666 SystemC TLM 2.0 compatible transaction-level models
• Interactive or batch-mode cosimulation and debugging
• Single-machine, multiple-machine, and cross-network cosimulation

2

About HDL Verifier

• “HDL Cosimulation” on page 2-2
• “FPGA Verification” on page 2-8
• “TLM Component Generation” on page 2-11
• “SystemVerilog DPI Component Generation” on page 2-14
• “HDL Verifier Supported Hardware” on page 2-16

2 About HDL Verifier

2-2

HDL Cosimulation

In this section...

“HDL Cosimulation with MATLAB or Simulink” on page 2-2
“Communications for HDL Cosimulation” on page 2-6
“Hardware Description Language (HDL) Support” on page 2-6
“HDL Cosimulation Workflows” on page 2-7
“Product Features and Platform Support” on page 2-7

HDL Cosimulation with MATLAB or Simulink

The HDL Verifier software consists of MATLAB functions, a MATLAB System object™,
and a library of Simulink blocks, all of which establish communication links between the
HDL simulator and MATLAB or Simulink.

HDL Verifier software streamlines FPGA and ASIC development by integrating tools
available for the following processes:

1 Developing specifications for hardware design reference models
2 Implementing a hardware design in HDL based on a reference model
3 Verifying the design against the reference design

The following figure shows how the HDL simulator and MathWorks® products fit into
this hardware design scenario.

 HDL Cosimulation

2-3

As the figure shows, HDL Verifier software connects tools that traditionally have been
used discretely to perform specific steps in the design process. By connecting these tools,
the link simplifies verification by allowing you to cosimulate the implementation and
original specification directly. This cosimulation results in significant time savings and
the elimination of errors inherent to manual comparison and inspection.

In addition to the preceding design scenario, HDL Verifier software enables you to work
with tools in the following ways:

• Use MATLAB or Simulink to create test signals and software test benches for HDL
code

• Use MATLAB or Simulink to provide a behavioral model for an HDL simulation
• Use MATLAB analysis and visualization capabilities for real-time insight into an

HDL implementation
• Use Simulink to translate legacy HDL descriptions into system-level views

Note: You can cosimulate a module using SystemVerilog, SystemC or both with
MATLAB or Simulink using the HDL Verifier software. Write simple wrappers around
the SystemC and make sure that the SystemVerilog cosimulation connections are to
ports or signals of data types supported by the link cosimulation interface.

More discussion on how cosimulation works can be found in the following sections:

• “Linking with MATLAB and the HDL Simulator” on page 2-3
• “Linking with Simulink and the HDL Simulator” on page 2-5
• “The HDL Cosimulation Wizard” on page 2-6

Linking with MATLAB and the HDL Simulator

When linked with MATLAB, the HDL simulator functions as the client, as the following
figure shows.

MATLAB
Server

HDL
Simulator
Client

Link

Out

Out

In

In

Request

Response

2 About HDL Verifier

2-4

In this scenario, a MATLAB server function waits for service requests that it receives
from an HDL simulator session. After receiving a request, the server establishes a
communication link and invokes a specified MATLAB function that computes data
for, verifies, or visualizes the HDL module (coded in VHDL or Verilog) that is under
simulation in the HDL simulator.

After the server is running, you can start and configure the HDL simulator or use with
MATLAB with the supplied HDL Verifier function:

• nclaunch (Incisive®)
• vsim (ModelSim)

The following figure shows how a MATLAB test bench function wraps around and
communicates with the HDL simulator during a test bench simulation session.

The following figure shows how a MATLAB component function is wrapped around by
and communicates with the HDL simulator during a component simulation session.

When you begin a specific test bench or component session, you specify parameters that
identify the following information:

 HDL Cosimulation

2-5

• The mode and, if applicable, TCP/IP data for connecting to a MATLAB server
• The MATLAB function that is associated with and executes on behalf of the HDL

instance
• Timing specifications and other control data that specifies when the module's

MATLAB function is to be called

Linking with Simulink and the HDL Simulator

When linked with Simulink, the HDL simulator functions as the server, as shown in the
following figure.

Simulink
Client

HDL Simulator
Server

Out

OutIn

In

Link

Request

Response

In this case, the HDL simulator responds to simulation requests it receives from
cosimulation blocks in a Simulink model. You begin a cosimulation session from
Simulink. After a session is started, you can use Simulink and the HDL simulator to
monitor simulation progress and results. For example, you might add signals to an HDL
simulator Wave window to monitor simulation timing diagrams.

Using the Block Parameters dialog box for an HDL Cosimulation block, you can
configure the following:

• Block input and output ports that correspond to signals (including internal signals)
of an HDL module. You can specify sample times and fixed-point data types for
individual block output ports if desired.

• Type of communication and communication settings used for exchanging data
between the simulation tools.

• Rising-edge or falling-edge clocks to apply to your module. You can individually
specify the period of each clock.

• Tcl commands to run before and after the simulation.

HDL Verifier software equips the HDL simulator with a set of customized functions.
For ModelSim, when you use the function vsimulink, you execute the HDL simulator
with an instance of an HDL module for cosimulation with Simulink. After the module is

2 About HDL Verifier

2-6

loaded, you can start the cosimulation session from Simulink. Incisive users can perform
the same operations with the function hdlsimulink.

HDL Verifier software also includes a block for generating value change dump (VCD)
files. You can use VCD files generated with this block to perform the following tasks:

• View Simulink simulation waveforms in your HDL simulation environment
• Compare results of multiple simulation runs, using the same or different simulation

environments
• Use as input to post-simulation analysis tools

The HDL Cosimulation Wizard

HDL Verifier contains the Cosimulation Wizard feature, which uses existing HDL code
to create a customized MATLAB function (test bench or component), MATLAB System
object, or Simulink HDL Cosimulation block. For more information, see “Import HDL
Code for Cosimulation”.

Communications for HDL Cosimulation

The mode of communication that you use for a link between the HDL simulator and
MATLAB or Simulink depends on whether your application runs in a local, single-
system configuration or in a network configuration. If these products and MathWorks
products can run locally on the same system and your application requires only one
communication channel, you have the option of choosing between shared memory
and TCP/IP socket communication. Shared memory communication provides optimal
performance and is the default mode of communication.

TCP/IP socket mode is more versatile. You can use it for single-system and network
configurations. This option offers the greatest scalability. For more on TCP/IP socket
communication, see “TCP/IP Socket Ports ”.

Hardware Description Language (HDL) Support

All HDL Verifier MATLAB functions and the HDL Cosimulation block offer the same
language-transparent feature set for both Verilog and VHDL models.

HDL Verifier software also supports mixed-language HDL models (models with both
Verilog and VHDL components), allowing you to cosimulate VHDL and Verilog signals

 HDL Cosimulation

2-7

simultaneously. Both MATLAB and Simulink software can access components in
different languages at any level.

HDL Cosimulation Workflows

The HDL Verifier User Guide provides instruction for using the verification software
with supported HDL simulators for the following workflows:

• Simulating an HDL Component in a MATLAB Test Bench Environment
• Replacing an HDL Component with a MATLAB Component Function
• Simulating an HDL Component in a Simulink Test Bench Environment
• Replacing an HDL Component with a Simulink Algorithm
• Recording Simulink Signal State Transitions for Post-Processing

Product Features and Platform Support

Product Feature Required Products Recommended
Products

Supported Platforms

MATLAB and
HDL simulator
cosimulation
(function)

MATLAB Fixed-Point
Designer™, Signal
Processing Toolbox™

Windows® 32- and
64-bit; Linux® 64-bit

MATLAB and
HDL simulator
cosimulation
(System object)

MATLAB and Fixed-
Point Designer

Communications
System Toolbox™,
DSP System
Toolbox™

Windows 32- and 64-
bit; Linux 64-bit

Simulink and
HDL simulator
cosimulation

Simulink, Fixed-
Point Designer

Signal Processing
Toolbox, DSP System
Toolbox

Windows 32- and 64-
bit; Linux 64-bit

2 About HDL Verifier

2-8

FPGA Verification

In this section...

“FPGA Verification with HDL Verifier and HDL Coder” on page 2-8
“Product Features and Platform Support” on page 2-8

FPGA Verification with HDL Verifier and HDL Coder

HDL Verifier works with Simulink or MATLAB and HDL Coder™ and the supported
FPGA development environment to prepare your automatically generated HDL Code
for implementation in an FPGA. FPGA-in-the-Loop (FIL) simulation allows you to run
a Simulink or MATLAB simulation with an FPGA board strictly synchronized with this
software. This process lets you get real world data into your design while accelerating
your simulation with the speed of an FPGA.

You can generate a FIL programming file in one of the following ways:

• With the HDL Verifier FIL Wizard.
• With the HDL Coder Workflow Advisor.

The FIL Wizard uses any synthesizable HDL code including code automatically
generated from Simulink models by HDL Coder software. When you use FIL in the
Workflow Advisor, HDL Coder uses the loaded design to create the HDL code. Either
way, this HDL code is then augmented by customized code for FIL communication
with your design and assembled into an FPGA project. The applicable downstream
tools are used to process that project to create a programming file that is automatically
downloaded to the FPGA device on a development board for verification.

HDL Verifier supports the use of a FIL block in a model reference block and a System
object in conjunction with a MATLAB program.

Product Features and Platform Support

• “Preregistered FPGA Devices for FIL Simulation” on page 2-9
• “Supported FPGA Device Families for Clock Module Generation” on page 2-9
• “JTAG Cable Support for Altera Boards” on page 2-10

 FPGA Verification

2-9

Product Feature Required Products Recommended
Products

Supported Platforms

FPGA-in-the-Loop For FIL simulation
with MATLAB:
MATLAB, Fixed-
Point Designer
For FIL simulation
with Simulink:
Simulink, Fixed-
Point Designer

HDL Coder Windows 32- and 64-
bit; Linux 64-bit

Preregistered FPGA Devices for FIL Simulation

HDL Verifier supports FIL simulation on the devices as described in “Supported FPGA
Devices for FIL Simulation” on page 3-5. The FPGA board support packages contain
the definition files for all supported boards. You may download one or more vendor-
specific packages, but you must download one of the packages before you can use FIL or
customize your own board definition file using the New FPGA Board Wizard (see “Create
Custom FPGA Board Definition”).

Visit the Hardware Support Catalog for a list of currently supported devices and boards.
Download an FPGA board support package with the supportPackageInstaller
command in MATLAB.

Supported FPGA Device Families for Clock Module Generation

For project generation with Filter Design HDL Coder™, see Xilinx documentation for a
full list of supported FPGA families in ISE.

With the current release, clock module generation is supported for the following device
families:

• Spartan®-3
• Spartan-3A and Spartan-3AN
• Spartan-3A DSP
• Spartan-3E
• Spartan-6
• Virtex®-4
• Virtex-5

http://www.mathworks.com/hardware-support/index.html?q=product%3A%22HDL+Verifier%22

2 About HDL Verifier

2-10

JTAG Cable Support for Altera Boards

• Windows

Requires Quartus II version 13.0 or higher, Quartus II executable directory must be
on system path

• Linux

Requires Quartus II version 13.1 or higher, Quartus II library directory must be on
LD_LIBRARY_PATH before starting MATLAB, only 64-bit Quartus are supported

 TLM Component Generation

2-11

TLM Component Generation

In this section...

“Generating TLM Components for Virtual Platform Development” on page 2-11
“Typical Users and Applications” on page 2-12
“Product Feature and Platform Support” on page 2-13

Generating TLM Components for Virtual Platform Development

HDL Verifier lets you create a SystemC Transaction Level Model (TLM) that can be
executed in any OSCI-compatible TLM 2.0 environment, including a commercial virtual
platform.

When used with virtual platforms, HDL Verifier joins two different modeling
environments: Simulink for high-level algorithm development and virtual platforms
for system architectural modeling. The Simulink modeling typically dispenses with
implementation details of the hardware system such as processor and operating system,
system initialization, memory subsystems, device configuration and control, and the
particular hardware protocols for transferring data both internally and externally.

The virtual platform is a simulation environment that is concerned about the hardware
details: it has components that map to hardware devices such as processors, memories,
and peripherals, and a means to model the hardware interconnect between them.

Although many goals could be met with a virtual platform model, the ideal scenario
for virtual platforms is to allow for software development—both high level application
software and low-level device driver software—by having fairly abstract models for the
hardware interconnect that allow the virtual platform to run at near real-time speeds, as
demonstrated in the following diagram.

2 About HDL Verifier

2-12

The functional model provides a sort of halfway point between the speed you can achieve
with abstraction and the accuracy you get with implementation.

Typical Users and Applications

Using HDL Verifier and Simulink, you can create a TLM-compliant SystemC
Transaction Level Model (TLM) that can be executed in any OSCI-compatible TLM
environment, including a commercial virtual platform.

Typical users and applications include:

• System-level engineers designing electronic system models that include architectural
characteristics

• Software developers who want to incorporate an algorithm into a virtual platform
without using an instruction set simulator (ISS).

• Hardware functional verification engineers. In this case, the algorithm represents a
piece of hardware going into a chip.

 TLM Component Generation

2-13

Product Feature and Platform Support

Product Feature Required Products Recommended
Products

Supported Platforms

TLM Generator Simulink Coder™ Embedded Coder®

(Simulink Coder is
also required)

Windows 32-bit and
64-bit; Linux 64-bit

2 About HDL Verifier

2-14

SystemVerilog DPI Component Generation

In this section...

“Export Simulink Subsystem or MATLAB Function With DPI Interface” on page
2-14
“Workflows” on page 2-14
“Product Feature and Platform Support” on page 2-14

Export Simulink Subsystem or MATLAB Function With DPI Interface

Export a Simulink subsystem or MATLAB function with a DPI interface for Verilog
or SystemVerilog Simulation. You can wrap generated C code with a DPI wrapper
that communicates with a SystemVerilog thin interface function in a SystemVerilog
simulation.

For Simulink, this feature is available in the Model Configuration Parameters dialog. For
MATLAB, you generate the component using the dpigen function.

Workflows

For use with Simulink:

• “Generate SystemVerilog DPI Component and Test Bench”
• “Customize Generated SystemVerilog Code”

For use with MATLAB:

• “DPI Component Generation with MATLAB”

Product Feature and Platform Support

Product Feature Required Products Recommended
Products

Supported Platforms

SystemVerilog
DPI Component
Generator

For DPI component
generation with
Simulink:

Embedded Coder Windows 32-bit and
64-bit; Linux 64-bit

 SystemVerilog DPI Component Generation

2-15

Product Feature Required Products Recommended
Products

Supported Platforms

Simulink and
Simulink Coder
For DPI component
generation with
MATLAB:
MATLAB and
MATLAB Coder

2 About HDL Verifier

2-16

HDL Verifier Supported Hardware

As of this release, HDL Verifier supports the following hardware.

Support Package Vendor Earliest Release
Available

Last Release Available

Altera FPGA Boards Altera R2013a Current
Xilinx FPGA Boards Xilinx R2013a Current

For a complete list of supported hardware, see Hardware Support.

http://www.mathworks.com/hardware-support/index.html?q=%20product:%22HDL+Verifier%22

3

Third-Party Product Requirements

3 Third-Party Product Requirements

3-2

Supported EDA Tools and Hardware

In this section...

“Cosimulation Requirements” on page 3-2
“FPGA Verification Requirements” on page 3-3
“TLM Generation System Requirements” on page 3-8

Cosimulation Requirements

• “Cadence Incisive Requirements” on page 3-2
• “Mentor Graphics Questa and ModelSim Usage Requirements” on page 3-2

Cadence Incisive Requirements

MATLAB and Simulink support Cadence® verification tools using HDL Verifier. Use one
of these recommended versions, which have been fully tested against the current release:

• Incisive 13.2 p002
• Incisive 13.1 s006
• Incisive 12.2 s007

The HDL Verifier shared libraries (liblfihdls*.so, liblfihdlc*.so) are built using
the gcc included in the Cadence Incisive simulator platform distribution. Before you link
your own applications into the HDL simulator, first try building against this gcc. See the
HDL simulator documentation for more details about how to build and link your own
applications.

Mentor Graphics Questa and ModelSim Usage Requirements

MATLAB and Simulink support Mentor Graphics verification tools using HDL Verifier.
Use one of the following recommended versions. Each version has been fully tested
against the current release:

• QuestaSim 10.3, 10.2c, 10.2b
• ModelSim/QuestaSim PE 10.2c, 10.1a
• ModelSim DE 10.1a (Windows 32 only)

 Supported EDA Tools and Hardware

3-3

• ModelSim SE 10.1c

FPGA Verification Requirements

• “Xilinx Usage Requirements” on page 3-3
• “Altera Quartus II Usage Requirements” on page 3-3
• “Supported FPGA Board Connections for FIL Simulation” on page 3-3
• “Supported FPGA Devices for FIL Simulation” on page 3-5
• “Supported FPGA Device Families for Board Customization” on page 3-7

Xilinx Usage Requirements

MATLAB and Simulink support Xilinx design tools using HDL Verifier.

• FPGA-in-the-Loop is tested with Xilinx ISE 14.7 and Xilinx Vivado® 2014.4.

Xilinx ISE is required for FPGA boards in the Spartan-6, Virtex-4, Virtex-5, and
Virtex-6 families. For all other supported FPGA families, Xilinx Vivado is required.

• ISE 11.1 or newer is recommended
• Consult Xilinx user documentation for compatibility of ISE tools with various Linux

distributions.

Altera Quartus II Usage Requirements

MATLAB and Simulink support Altera design tools using HDL Verifier.

• FPGA-in-the-Loop is tested with Altera Quartus II 14.0.

Supported FPGA Board Connections for FIL Simulation

JTAG Connection

Vendor Supported Devices Required
Hardware

Required Software

Altera The FPGA board
must be using an
FPGA device in the
supported Altera
FPGA families.

• USB Blaster
I or USB
Blaster II
download
cable

• USB Blaster I or II driver
• For Windows operating systems:

Quartus II executable directory
must be on system path.

3 Third-Party Product Requirements

3-4

Vendor Supported Devices Required
Hardware

Required Software

• For Linux operating systems:
versions below Quartus II 13.1
are not supported. Quartus II
14.1 is not supported. Only 64-
bit Quartus II is supported.
Quartus II library directory must
be on LD_LIBRARY_PATH before
starting MATLAB. Prepend the
Linux distribution library path
before the Quartus II library on
LD_LIBRARY_PATH. For example,
/lib/x86_64-linux-gnu:

$QUARTUS_PATH.
Xilinx The board must be

using a supported
FPGA from the
Xilinx 7-series
family.

• Digilent®

download
cable. If your
board has
a standard
Xilinx 14
pin JTAG
connector, you
can obtain
the HS2 cable
from Digilent.

• For Windows operating systems:
Xilinx Vivado executable directory
must be on system path.

• For Linux operating systems:
Digilent Adept2

Note: For board support, see “Supported FPGA Devices for FIL Simulation” on page
3-5.

Additional boards can be custom added with the “FPGA Board Manager ”. See
“Supported FPGA Device Families for Board Customization” on page 3-7.

Ethernet Connection

• Hardware:

• Gigabit Ethernet card

 Supported EDA Tools and Hardware

3-5

• Cross-over Ethernet cable
• FPGA board with supported Ethernet connection

• PHY Interface Type:

• Gigabit Ethernet — GMII
• Gigabit Ethernet — RGMII
• Gigabit Ethernet — SGMII
• Ethernet — MII

• Software:

• There are no software requirements for an Ethernet connection, but the firewall on
the host computer should not prevent UDP communication for FIL

• Limitations:

• Virtex-7 VC707 not supported for Vivado versions older than 2013.4.

Supported FPGA Devices for FIL Simulation

HDL Verifier supports FIL simulation on the devices shown in the following table.
The board definition files for these boards are in the “Download FPGA Board Support
Package”. You may also add other FPGA boards for use with FIL with FPGA board
customization (“FPGA Board Customization”).

Device Family Board Comments

Xilinx Zynq® Zynq-7000 ZC702
Zynq-7000 ZC706
ZedBoard™
ZYBO™
Zynq-7000

Xilinx
Artix®-7

Digilent
Nexys™4
Artix-7

Xilinx
Spartan-6

Spartan-6 SP605
Spartan-6 SP601
XUP Atlys Spartan-6

Xilinx
Virtex-7

Virtex-7 VC707

3 Third-Party Product Requirements

3-6

Device Family Board Comments

Xilinx
Virtex-6

Virtex-6 ML605

Xilinx
Virtex-5

Virtex ML505
Virtex ML506
Virtex ML507
Virtex XUPV5–LX110T

Xilinx Virtex Virtex ML401
Virtex ML402
Virtex ML403

Xilinx
Kintex®-7

Kintex-7 KC705

Altera Arria®

II
Arria II GX FPGA development kit

Altera Arria
V

Arria V SoC development kit
Arria V starter kit

The Altera Arria V SOC
development kit supports a
JTAG connection only.

Altera
Cyclone® IV

Cyclone IV GX FPGA development kit
DE2-115 development and education board
BeMicro SDK

The Altera DE2-115 FPGA
development board has two
Ethernet ports. FPGA-in-
the-loop uses only Ethernet
0 port. Make sure that you
connect your host computer
with the Ethernet 0 port on
the board via an Ethernet
cable.

Altera
Cyclone III

Cyclone III starter kit
Cyclone III FPGA development kit
Altera Nios II Embedded Evaluation Kit,
Cyclone III Edition

The Altera Cyclone III
starter kit supports a JTAG
connection only.

Altera
Cyclone V

Cyclone V FPGA GX development board
Cyclone V SoC development kit
Cyclone V GT development kit
Arrow® SoC development kit

The Cyclone V SoC and
Arrow SoC development
kits are supported for JTAG
connection only.

 Supported EDA Tools and Hardware

3-7

Device Family Board Comments

Altera
Stratix® IV

Stratix IV GX FPGA development board

Altera
Stratix V

Stratix V DSP Development Kit

Limitations

• Ethernet PHY RGMII interface is not supported for Xilinx Spartan6 family when
used with FPGA-in-the-loop.

• For FPGA development boards that have more than one FPGA device, only one such
device can be used with FIL.

FPGA Board Support Packages

The FPGA board support packages contain the definition files for all supported boards.
You may download one or more vendor-specific packages, but you must download one of
the packages before you can use FIL or customize your own board definition file using the
New FPGA Board Wizard (see “Create Custom FPGA Board Definition”).

Visit the Hardware Support Catalog for a list of currently supported devices and boards.
Download an FPGA board support package with the supportPackageInstaller
command in MATLAB.

Supported FPGA Device Families for Board Customization

HDL Verifier supports the following FPGA device families for board customization; that
is, when you create your own board definition file. See “FPGA Board Customization”.

Device Family

Virtex 4
Virtex 5
Virtex 6
Spartan 6
Kintex 7
Zynq 7000

Xilinx

Artix 7

http://www.mathworks.com/hardware-support/index.html?q=product%3A%22HDL+Verifier%22

3 Third-Party Product Requirements

3-8

Device Family

Cyclone III
Cyclone IV
Cyclone V
Arria II
Arria V
Stratix IV

Altera

Stratix V

TLM Generation System Requirements

With the current release, TLMG includes support for:

• Compilers:

• Visual Studio®: VS2005, VS2008, VS2010, and VS2012
• gcc 4.4.6

• SystemC:

• SystemC 2.3.1 (TLM included)

You can download SystemC and TLM libraries at http://accellera.org. Consult the
Accellera Systems Initiative web site for information about how to build these
libraries after downloading.

• System C Modeling Library (SCML):

• SCML 2.2

You can download SCML from https://www.synopsys.com.

http://accellera.org
https://www.synopsys.com

4

System Objects

• “What Is a System Toolbox?” on page 4-2
• “What Are System Objects?” on page 4-3
• “System Objects vs. MATLAB Functions” on page 4-4
• “System Design and Simulation in MATLAB” on page 4-5
• “System Objects in Simulink” on page 4-6
• “System Object Methods” on page 4-7
• “System Design in MATLAB Using System Objects” on page 4-10

4 System Objects

4-2

What Is a System Toolbox?

System Toolbox products provide algorithms and tools for designing, simulating,
and deploying dynamic systems in MATLAB and Simulink. These toolboxes contain
MATLAB functions, System objects, and Simulink blocks that deliver the same design
and verification capabilities across MATLAB and Simulink, enabling more effective
collaboration among system designers. Available System Toolbox products include:

• DSP System Toolbox
• Communications System Toolbox
• Computer Vision System Toolbox™
• Phased Array System Toolbox™

System Toolboxes support floating-point and fixed-point streaming data simulation
for both sample- and frame-based data. They provide a programming environment for
defining and executing code for various aspects of a system, such as initialization and
reset. System Toolboxes also support code generation for a range of system development
tasks and workflows, such as:

• Rapid development of reusable IP and test benches
• Sharing of component libraries and systems models across teams
• Large system simulation
• C-code generation for embedded processors
• Finite wordlength effects modeling and optimization
• Ability to prototype and test on real-time hardware

 What Are System Objects?

4-3

What Are System Objects?

A System object is a specialized kind of MATLAB object. System Toolboxes include
System objects and most System Toolboxes also have MATLAB functions and Simulink
blocks. System objects are designed specifically for implementing and simulating
dynamic systems with inputs that change over time. Many signal processing,
communications, and controls systems are dynamic. In a dynamic system, the values
of the output signals depend on both the instantaneous values of the input signals and
on the past behavior of the system. System objects use internal states to store that past
behavior, which is used in the next computational step. As a result, System objects are
optimized for iterative computations that process large streams of data, such as video
and audio processing systems.

For example, you could use System objects in a system that reads data from a file,
filters that data and then writes the filtered output to another file. Typically, a specified
amount of data is passed to the filter in each loop iteration. The file reader object uses
a state to keep track of where in the file to begin the next data read. Likewise, the file
writer object keeps tracks of where it last wrote data to the output file so that data is not
overwritten. The filter object maintains its own internal states to assure that the filtering
is performed correctly. This diagram represents a single loop of the system.

Many System objects support:

• Fixed-point arithmetic (requires a Fixed-Point Designer license)
• C code generation (requires a MATLAB Coder or Simulink Coder license)
• HDL code generation (requires an HDL Coder license)
• Executable files or shared libraries generation (requires a MATLAB Compiler™

license)

Note: Check your product documentation to confirm fixed-point, code generation, and
MATLAB Compiler support for the specific System objects you want to use.

4 System Objects

4-4

System Objects vs. MATLAB Functions

System Objects vs. MATLAB Functions

Many System objects have MATLAB function counterparts. For simple, one-time
computations use MATLAB functions. However, if you need to design and simulate
a system with many components, use System objects. Using System objects is also
appropriate if your computations require managing internal states, have inputs that
change over time or process large streams of data.

Building a dynamic system with different execution phases and internal states using
only MATLAB functions would require complex programming. You would need code to
initialize the system, validate data, manage internal states, and reset and terminate
the system. System objects perform many of these managerial operations automatically
during execution. By combining System objects in a program with other MATLAB
functions, you can streamline your code and improve efficiency.

With HDL Verifier, you can choose to create an HDL cosimulation System object or an
HDL cosimulation test bench or component function, depending on the needs of your
application.

• “Create a MATLAB System Object”
• “Create a MATLAB Test Bench”
• “Create a MATLAB Component Function”

 System Design and Simulation in MATLAB

4-5

System Design and Simulation in MATLAB

System objects allow you to design and simulate your system in MATLAB. You use
System objects in MATLAB as shown in this diagram.

1 Create individual components — Create the System objects to use in your system.
See “Create Components for Your System” on page 4-10 for information.

2 Configure components — If necessary, change the objects’ property values to model
your particular system. All System object properties have default values that you
may be able to use without changing them. See “Configure Components for Your
System” on page 4-10 for information.

3 Assemble components into system — Write a MATLAB program that includes those
System objects, connecting them using MATLAB variables as inputs and outputs to
simulate your system. See “Assemble Components to Create Your System” on page
4-11 for information.

4 Run the system — Run your program, which uses the step method to run your
system’s System objects. You can change tunable properties while your system is
running. See “Run Your System” on page 4-12 and “Reconfigure Your System
During Runtime” on page 4-12 for information.

4 System Objects

4-6

System Objects in Simulink

System Objects in the MATLAB Function Block

You can include System object code in Simulink models using the MATLAB Function
block. Your function can include one or more System objects. Portions of your system may
be easier to implement in the MATLAB environment than directly in Simulink. Many
System objects have Simulink block counterparts with equivalent functionality. Before
writing MATLAB code to include in a Simulink model, check for existing blocks that
perform the desired operation.

 System Object Methods

4-7

System Object Methods

In this section...

“What Are System Object Methods?” on page 4-7
“The Step Method” on page 4-7
“Common Methods” on page 4-8

What Are System Object Methods?

After you create a System object, you use various object methods to process data or
obtain information from or about the object. All methods that are applicable to an object
are described in the reference pages for that object. System object method names begin
with a lowercase letter and class and property names begin with an uppercase letter.
The syntax for using methods is <method>(<handle>), such as step(H), plus possible
extra input arguments.

System objects use a minimum of two commands to process data—a constructor to
create the object and the step method to run data through the object. This separation
of declaration from execution lets you create multiple, persistent, reusable objects,
each with different settings. Using this approach avoids repeated input validation
and verification, allows for easy use within a programming loop, and improves overall
performance. In contrast, MATLAB functions must validate parameters every time you
call the function.

These advantages make System objects particularly well suited for processing streaming
data, where segments of a continuous data stream are processed iteratively. This ability
to process streaming data provides the advantage of not having to hold large amounts of
data in memory. Use of streaming data also allows you to use simplified programs that
use loops efficiently.

The Step Method

The step method is the key System object method. You use step to process data using
the algorithm defined by that object. The step method performs other important tasks
related to data processing, such as initialization and handling object states. Every
System object has its own customized step method, which is described in detail on the
step reference page for that object. For more information about the step method and
other available methods, see the descriptions in “Common Methods” on page 4-8.

4 System Objects

4-8

Common Methods

All System objects support the following methods, each of which is described in a method
reference page associated with the particular object. In cases where a method is not
applicable to a particular object, calling that method has no effect on the object.

Method Description

step Processes data using the algorithm defined by the object. As
part of this processing, it initializes needed resources, returns
outputs, and updates the object states. After you call the
step method, you cannot change any input specifications (i.e.,
dimensions, data type, complexity). During execution, you can
change only tunable properties. The step method returns
regular MATLAB variables.

Example: Y = step(H,X)
release Releases any special resources allocated by the object, such

as file handles and device drivers, and unlocks the object.
For System objects, use the release method instead of a
destructor.

reset Resets the internal states of a locked object to the initial values
for that object and leaves the object locked

getNumInputs Returns the number of inputs (excluding the object itself)
expected by the step method. This number varies for an object
depending on whether any properties enable additional inputs.

getNumOutputs Returns the number of outputs expected from the step
method. This number varies for an object depending on
whether any properties enable additional outputs.

getDiscreteState Returns the discrete states of the object in a structure. If the
object is unlocked (when the object is first created and before
you have run the step method on it or after you have released
the object), the states are empty. If the object has no discrete
states, getDiscreteState returns an empty structure.

clone Creates another object of the same type with the same property
values

isLocked Returns a logical value indicating whether the object is locked.

 System Object Methods

4-9

Method Description

isDone Applies to source objects only. Returns a logical value
indicating whether the step method has reached the end of
the data file. If a particular object does not have end-of-data
capability, this method value returns false.

info Returns a structure containing characteristic information
about the object. The fields of this structure vary depending on
the object. If a particular object does not have characteristic
information, the structure is empty.

4 System Objects

4-10

System Design in MATLAB Using System Objects

In this section...

“Create Components for Your System” on page 4-10
“Configure Components for Your System” on page 4-10
“Assemble Components to Create Your System” on page 4-11
“Run Your System” on page 4-12
“Reconfigure Your System During Runtime” on page 4-12

Create Components for Your System

This example shows how to use System objects that are predefined in the software.
You can also create your own System objects (see “Define System Objects”). If you use a
function to create and use a System object, specify the object creation using conditional
code. This will prevent errors if that function is called within a loop.

The predefined components for use with HDL Verifier are:

• hdlverifier.HDLCosimulation: For HDL cosimulation between MATLAB and an HDL
simulator, such as Mentor Graphics ModelSim or Cadence Incisive.

• hdlverifier.FILSimulation class: For FPGA-in-the-Loop simulation with MATLAB.

You can use these objects as components in your system. Each of these System objects
has default property settings, so you can create instances of them using just the object
name without any input properties.

Configure Components for Your System

When to Configure Components

If you did not set an object's properties when you created it and do not want to use
default values, you must explicitly set those properties. Some properties allow you to
change their values while your system is running. See “Reconfigure Your System During
Runtime” on page 4-12 for information.

Most properties are independent of each other. However, some System object properties
enable or disable another property or limit the values of another property. To avoid

 System Design in MATLAB Using System Objects

4-11

errors or warnings, you should set the controlling property before setting the dependent
property.

Display Component Property Values

To display the current property values for an object, type that object’s handle name at
the command line (such as audioIn). To display the value of a specific property, type
objecthandle.propertyname (such as audioIn.FileName).

Configure Component Property Values

This example shows how to set properties for HDL.

With the HDL cosimulation object created through the HDL cosim wizard or the HDL
workflow advisor, you can set properties for connection, input signals, output signals, etc.

fft_hdl = hdlcosim_fft_hdl;

fft_hdl.Connection = ('SharedMemory';

fft_hdl.InputSignals = '/viterbi_block/In1','/viterbi_block/In2';

fft_hdl.OutputSignals = '/viterbi_block/Out1';

See the hdlverifier.HDLCosimulation ref page for full details and a list of
properties.

Assemble Components to Create Your System

Connect Inputs and Outputs

After you have determined the components you need and have created and configured
your System objects, assemble your system. You use the System objects like other
MATLAB variables and include them in MATLAB code. You can pass MATLAB variables
into and out of System objects.

The main difference between using System objects and using functions is the step
method. The step method is the processing command for each System object and is
customized for that specific System object. This method initializes your objects and
controls data flow and state management of your system. You typically use step within a
loop.

You use the output from an object’s step method as the input to another object’s step
method. For some System objects, you can use properties of those objects to change the
number of inputs or outputs. To verify that the appropriate number of input and outputs
are being used, you can use getNumInputs and getNumOutputs on any System object.

4 System Objects

4-12

For information on all available System object methods, see “System Object Methods” on
page 4-7.

Run Your System

• “How to Run Your System” on page 4-12
• “What You Cannot Change While Your System Is Running” on page 4-12

How to Run Your System

Run your code either by typing directly at the command line or running a file containing
your program. When you run the code for your system, the step method instructs each
object to process data through that object.

What You Cannot Change While Your System Is Running

The first call to the step method initializes and then locks your object. When a System
object has started processing data, it is locked to prevent changes that would disrupt its
processing. Use the isLocked method to verify whether an object is locked. When the
object is locked, you cannot change:

• Number of inputs or outputs
• Data type of inputs or outputs
• Data type of any tunable property
• Dimensions of inputs or tunable properties, except for System objects that support

variable-size data
• Value of any nontunable property

To make changes to your system while it is running, see “Reconfigure Your System
During Runtime” on page 4-12.

Reconfigure Your System During Runtime

• “When Can You Change Component Properties?” on page 4-12
• “Change Input Complexity or Dimensions” on page 4-13

When Can You Change Component Properties?

When a System object has started processing data, it is locked to prevent changes that
would disrupt its processing. You can use isLocked on any System object to verify

 System Design in MATLAB Using System Objects

4-13

whether it is locked or not. When processing is complete, you can use the release
method to unlock a System object.

Some object properties are tunable, which enables you to change them even if the object
is locked. Unless otherwise specified, System objects properties are nontunable. Refer
to the object’s reference page to determine whether an individual property is tunable.
Typically, tunable properties are not critical to how the System object processes data.

Change Input Complexity or Dimensions

During simulation, some System objects do not allow complex data if the object was
initialized with real data. You cannot change any input complexity during code
generation.

You can change the value of a tunable property without a warning or error being
produced. For all other changes at run time, an error occurs.

